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ABSTRACT

The free propagation of a wavefront in an inhomogeneous medium with parabdlic refradive index profile ad the
division of the wavefront into Fresnel zones are studied. We determine the radius and the aeaof ead zone a well as
the zne @ntribution to the total wave & an observation point inside the medium. We find the cndition that the optica
path must fulfill from ead zone to the gorementioned pdnt so that the disturbance due to successve znes will be in
phase oppaition. Once this condition is sttled the cncept of zone plate in gradient-index (GRIN) media can be
introduced.
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1. INTRODUCTION

Fresnel zones resulting from the division of a wavefront that propagates in a homogeneous medium are well known in
optics and have receved widespreal attention. Fundamental properties and many pradicd applicaions have been
considered [1]. The purpose of thiswork isto generalize the zone division of a wavefront for inhomogeneous media[2].
The study will be restricted to the propagation of light in a GRIN medium and to the evaluation of the contribution of
the successve mnesto the total disturbance d apoint.

2. FREE PROPAGATION OF A WAVEFRONT IN AN INHOMOGENEOUS MEDIUM

Let us consider a tapered GRIN medium charaderized by a transverse parabadlic refradive index modulated by an axial
index and whose refradive index profil e is given by

n’(x,2)=nil-g2@) 3% r? =x® 4y, (1)
where ng is the index at the z opticd axis and g(2) is the taper function that describes the evolution of the transverse
parabalic index distribution along the z axis.

A point source situated at the input of the medium emits light that propagates a distance z, producing a disturbance &
apoint (rq, 2) which can be expressd as
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where H,(z) and H1 (z) are the paosition and the slope of the aial ray [3], the dot indicaing diff erentiation with resped
to z. From this equation the arvature radius can be defined as R(z) = H,(2) / [nOH 1 (z)] .
The complex amplitude distribution at a point (r, Z) —seeFig.1— can be cdculated from the wavefront in EqQ. (2)
by solving the diffradion integral [3]
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where K(r, rq; Z) isthe expresgon of the propagator in cylindrica coordinates
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Figure 1. Geometry for the propagation and division of awavefront in a GRIN medium.

ds is the surface éement and H,(z'), H,(z"), H,(z") and H,(z') are, respedively, the position and the slope of
the aial and field ray at Z after propagating from z.

Substitution of Egs. (2) and (4) into Eq. (3) provides
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In order to dvide the wavefront into zones, we mnsider a drcular aperture with radius h and asauume slow variations
of z within the 2ne determined by this aperture. Furthermore, we restrict the study to wavefronts sufficiently far from
the planes where H;(2) = 0 (image planes) —which allows us to develop the surface éement in power series— and to
observation points on the opticd axis. With these @nditionsin mind, Eq. (5) becomes
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whose solution is
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and where we have defined
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For a better understanding of the end-result we will analyzethe foll owing two cases: H ;(2)equal to zero and H 1(2)
small i n comparison to Hy(2), which will be discussed below.

2.1. Wavefront at Fourier Transform Planes

At the Fourier transform planes (H 1(2) = 0) the wavefront curvature beames zero and, consequently, no variations of

zwithin a 2one ae present. Thisfad all ows the second addend to be deleted in Eq. (7), being the field and the irradiance
given, respedively, by
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and we can find the values of h for which maxima and minima of irradiance are reached at a point Z as well as the
distancesrj from z' to the upper part of the zones defined by those values of h. These distancesr; are
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wherej is an integer which assumes an even value for minima and an odd value for maxima.

Nonetheless, the presence of the inhomogeneous medium induces a shift of the maxima, resulting in the principal
maximum aways being located at planes verifying Hy(Z) = 0 (imaging planes) and the secondary maxima dlightly
shifting from the resulting positions of Eg. (10). The minima do not show any displacement at all.

2.2. Wavefront off Fourier Transform Planes

When the wavefront is moved off the Fourier transform planes, with the restriction H 1(2) <<H(z),thetermin Eq. (7)
that goes with B is very small and can be disregarded, being the irradiance at a point Z

1z = kong sin? DB(Z’Z')W% JOHID (11)
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Inthis case, the distances r; become
r; =" -z)+ JAH, (2 )R(z) (12)
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where, again, the maxima are shifted, but now the principal maximum is not exactly at the imaging planes. In Fig.2 we
represent the displacement of the principal maximum from the imaging planes against the displacement of the wavefront
from the Fourier transform planes. We observe a change in the position of the principal maximum which is dependent on
the particular conditions of the problem. As the wavefront shifts from the Fourier transform planes, the principa
maximum moves away from the imaging planes and subsequently approaches them again. The maximum shift from the
imaging planes is, however, achieved for the same wavefront location in al cases, which leads us to conclude that the
maximum shift is only a function of the medium characteristics.
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Figure 2. Displacement of the principal maximum from the imaging planes as a function of the displacement of the
wavefront from the Fourier transform planes. For our calculations the first imaging planeisat Z = 10rtmm.



3. ZONE RADII AND AREAS

Using Egs. (10) and (12) and with a simple geometric cdculation, we can determine the radii of every zone into which
the wavefront has been divided for wavefronts at Fourier planes and off them. The expressons for the two cases are,
respedively
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In the same way, integrating the surface éement dZ within the limits of ead zone, we can determine the zne aess,
which are given by
_MH,(z') mH,(z")H,(z)
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These expresgons duplicae the dassc results for homogeneous media [4] by making H,(Z') - z'—z and
H,(Z) - 1.

4. ZONE CONTRIBUTION TO THE TOTAL DISTURBANCE

Equation (6) allowed usto determine the total disturbance d apoint Z dueto a drcular aperture of radius h. To find the
contribution of a single 2one, we only have to change the integration limits. Hence, for wavefronts at Fourier transform
planes and off them, the contribution of the jth zone to thefield at Z is given, respedively, by
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We note that the antributions of the successve zones are dternately positive and negative. The total effed at Z is
obtained by summing all these mntributions. If j is odda minimum is obtained at Z and if j is even the irradiance will
give amaximum. For wavefronts at Fourier transform planes al the znes contribute in the same way, whereas the
contributions are dlightly diff erent for wavefronts shifted from that plane.

CONCLUSIONS

We have divided a wavefront into periodic zones by cdculating the differencein opticd path between successve zones.
We have determined the radii and the aeas of those znes, obtaining that they coincide for ead zone when the
wavefront is stuated at a Fourier transform plane. Once this done, we have obtained the disturbance produced by these
zones sparately at a point on the opticd axis, noticing that their contributions are dternately positive and negative. The
fad that successve zones provoke mntributions to the total disturbance which tend to cancd ead other out implies that
we would olserve ahuge increase in the irradiance d a point if we diminate dl the even or odd zones. This suggests
and justifies the anstruction of zone platesin GRIN media, which will be the next step in our study.
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